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Development and Validation of a Computational
Method for Assessment of Missense Variants
in Hypertrophic Cardiomyopathy

Daniel M. Jordan,1,2,8 Adam Kiezun,1,8 Samantha M. Baxter,3,8 Vineeta Agarwala,2,3 Robert C. Green,4,5,6

Michael F. Murray,1 Trevor Pugh,3,6 Matthew S. Lebo,3,6 Heidi L. Rehm,3,7 Birgit H. Funke,3,7,*
and Shamil R. Sunyaev1,*

Assessing the significance of novel genetic variants revealed by DNA sequencing is a major challenge to the integration of genomic tech-

niques with medical practice. Many variants remain difficult to classify by traditional genetic methods. Computational methods have

been developed that could contribute to classifying these variants, but they have not been properly validated and are generally not

considered mature enough to be used effectively in a clinical setting. We developed a computational method for predicting the effects

of missense variants detected in patients with hypertrophic cardiomyopathy (HCM). We used a curated clinical data set of 74 missense

variants in six genes associated with HCM to train and validate an automated predictor. The predictor is based on support vector regres-

sion and uses phylogenetic and structural features specific to genes involved in HCM. Ten-fold cross validation estimated our predictor’s

sensitivity at 94% (95% confidence interval: 83%–98%) and specificity at 89% (95% confidence interval: 72%–100%). This corresponds

to an odds ratio of 10 for a prediction of pathogenic (95% confidence interval: 4.0–infinity), or an odds ratio of 9.9 for a prediction of

benign (95% confidence interval: 4.6–21). Coverage (proportion of variants for which a prediction was made) was 57% (95% confidence

interval: 49%–64%). This performance exceeds that of existing methods that are not specifically designed for HCM. The accuracy of this

predictor provides support for the clinical use of automated predictions alongside family segregation and population frequency data in

the interpretation of new missense variants and suggests future development of similar tools for other diseases.
Introduction

DNA sequencing is quickly becoming the method of

choice for clinical genetic diagnostics. The improvement

in clinical sensitivity that sequencing provides over geno-

typing platforms is invaluable, especially in disorders that

show locus and allelic heterogeneity. However, there are

also important challenges presented by the use of DNA

sequencing, including the difficulty of interpreting novel

sequence variants. There is currently little standardization

of variant classification in the genetics community. Most

clinics use a combination of traditional genetic methods

relying on segregation with the disease in families,

frequency in controls, biochemical characterization, and

evolutionary conservation at the variant position.1 This

manual classification process is time consuming and

requires significant expert knowledge. More frustratingly,

it often fails to produce a classification at all: variants

with incomplete or conflicting data are routinely classified

as variants of unknown significance (VUSs), and no confi-

dent classification is reported to the patient or the referring

physician. In some genes, these VUSs comprise as many as

one-quarter to one-half of all reported variants.2 This

problem is only getting worse. As next-generation

sequencing technologies begin to enter widespread clinical
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use, the volume of novel variants is expected to expand by

several orders of magnitude. The genetics community

must therefore begin to develop robust automated

methods to classify novel variants accurately.

There currently exist several computational tools for pre-

dicting the functional effects of genetic variants.3–5

However, these tools in general were not designed for clin-

ical use, have not been rigorously tested on individual

genes or diseases, and have not undergone any kind of vali-

dation against well-curated data sets. Therefore, the sensi-

tivities and specificities of these predictors are in general

ill-defined. This lack of proper validation has created the

perception among medical professionals that automated

predictors cannot be trusted.6 Consequently, although

most geneticists are familiar with these tools, the predic-

tions they produce are typically not formally included in

clinical variant classification methods and are therefore

not communicated to physicians via clinical reports.

Several studies have attempted to address this problem

by validating existing predictors against known disease-

causing variants, largely arriving at the conclusion that

these methods are not yet mature enough for clinical

use.6–8

Variant classification pipelines that are considered

mature enough for clinical use are generally designed
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from the ground up with clinical use in mind and are de-

signed, demonstrated, and validated using variants classi-

fied according to clinical criteria. Examples of such pipe-

lines include the classification procedure currently in use

at the Laboratory for Molecular Medicine (LMM), a clinical

diagnostic laboratory in the U.S., and the integrated evalu-

ation of BRCA gene variants that developed from the work

of Goldgar et al.9 However, fully automated computational

predictors are not currently designed in this way.We there-

fore set out to test whether this methodology could

successfully create an automated predictor that would be

useful to medical professionals as a tool for classifying

novel missense variants. We chose to target one specific

disease and a limited number of genes in which disease-

causing variants might be found so that we would be

able to generate a high-quality set of manually classified

missense variants to use as the gold standard for training

and validating our predictions. We also hoped that

focusing on a limited number of functionally related genes

would allow us to identify common features of these genes

and commonmechanisms of disease in these genes, which

would help us to make our predictor more accurate.

The disease we chose was hypertrophic cardiomyopathy

(HCM [MIM 192600]), an autosomal dominant disease of

the myocardium (heart muscle) with an incidence of

roughly one in 500 individuals and a largely genetic

basis.10 Variants in over 20 genes are associated with

HCM, with over 900 unique variants reported in the liter-

ature, and sequencing of many of these genes can be

ordered for clinical testing in CLIA-approved laboratories.

The vast majority of pathogenic variants are found in eight

genes that encode for units of the cardiac sarcomere,

a contractile protein complex in the heart: b-cardiac

myosin heavy chain (MYH7 [MIM 160760]), cardiac actin

(ACTC1 [MIM 102540]), cardiac troponin T (TNNT2

[MIM 191045]), a-tropomyosin (TPM1 [MIM 191010]),

cardiac troponin I (TNNI3 [MIM 191044]), cardiac

myosin-binding protein C (MYBPC3 [MIM 600958]), and

the myosin light chains (MYL2 [MIM 160781] and MYL3

[MIM 160790]). Sequencing of these genes yields a high

number of novel variants, mainly because of the high

prevalence of private familial variants. Roughly 50%

of probands tested have a disease-causing variant in one

of these genes, and approximately 80% of those are

in MYH7 and MYBPC3 (H.L.R., unpublished data).11

Missense variants represent nearly all such variants de-

tected in MYH7 and 35% of those in MYBPC3. Missense

variants exerting dominant negative effects on the sarco-

mere structure represent the vast majority of all variants.

The notable exception is MYBPC3, where missense vari-

ants constitute only 35% of all variants, the remainder

being splice, nonsense, or frameshift variants leading to

loss of function. At the time of this study, the LMM had

identified over 700 variants in HCM-related genes over

5 years of testing, over half of which were novel at the

time of reporting and over half of which were missense

changes. We performed a systematic manual classification
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of these variants, producing a final data set of 74 missense

variants with extremely confident manual classifications.

Using these 74 variants as our gold standard, we then set

out to develop and validate a computational method that

could predict the pathogenicity of any variant in these

six genes.
Material and Methods

We created a computational method to predict the pathogenicity

of a novel variant in any of the six genes we chose to screen for

HCM mutations. Our method, like other existing methods12–16

and, particularly, the recently developed algorithm PolyPhen-

2,17 integrates phylogenetic and structural information from

several heterogeneous sources with a probabilistic classifier.

However, unlike these methods, it exploits the narrow focus on

six specific genes known to contain variants that cause the disease

to improve the prediction strategy significantly. Also unlike these

methods, it uses variants classified according to clinical criteria of

pathogenicity to train the probabilistic classifier. The selection and

classification of these variants, the features used for classification,

and the training and validation of the classifier are all described

below. This study was performed under an institutional-review-

board-approved protocol through Partners Healthcare System.

Selection of Target Genes
HCM is caused primarily by variants in eight genes encoding

protein subunits of the cardiac sarcomere. We initially attempted

to use all eight genes to develop our predictor. However, after con-

structing our data set (see Manual Classification of HCM Variants

below), we examined the distribution of variants and found that

the final data set contained no variants in ACTC1 and only one

in MYL3. We discarded these two genes and built our classifier

around the remaining six (MYH7, TNNT2, TPM1, TNNI3,

MYPC3, and MYL2).

Manual Classification of HCM Variants
We relied on LMM’s standard variant-assessment pipeline to create

our data set of manually classified variants. To ensure unbiased

training and testing of our computational method, we excluded

from manual classification information that was accessible to

the method such as evolutionary conservation or structural data,

even though this information is currently used in the pipeline.

Each variant recieved a classification of pathogenic, likely patho-

genic benign, likely benign, or VUS. The basic decision process

we used is described below and shown in Figure 1.

Pathogenic

Variants with a minimum of five informative meioses supporting

familial cosegregation with HCM, absent in healthy controls, and/

or having strong functional data are classified as pathogenic. In

HCM, informative meioses typically only include individuals

who are positive for both phenotype and genotype. This level of

stringency is required because of the highly variable expressivity

and reduced penetrance, which make individuals without the

phenotype largely uninformative, regardless of their genotype.

Likely Pathogenic

The minimum requirement to classify a variant as likely patho-

genic is absence from race-matched controls or a large cohort of

race-matched probands. The LMM has previously sequenced

sarcomere genes in over 1000 HCM probands of European
11, 2011
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Figure 1. Process Used to Classify Variants at the LMM
This process is described in detail in Material and Methods. We treat the pathogenic, benign, and likely benign categories as high-confi-
dence classifications for the purposes of training the automatic classifier.

Figure 2. Distribution of Variant Pathogenicity
We categorized 350missense variants in six genes according to the
criteria described in Figure 1. The three categories pathogenic,
benign, and likely benign were treated as high-confidence classifi-
cations and used as training data for our classifier (enumerated in
Table S1).
ancestry. Absence from this cohort was accepted in lieu of healthy

control data because it serves to set a maximum population

frequency of one per the total number of probands tested. Novel

variants detected in minority populations are therefore often

classified as VUSs because of the lack of control cohorts or large

proband datasets.

Benign or Likely Benign

Variants that are frequent in the general population (at least 3%)

are classified as benign. Variants present in controls at frequencies

below 3% and without other suspicion for pathogenicity are

classified as likely benign.

VUS

This class commonly includes variants for which there is insuffi-

cient evidence to classify the variant in any of the other four cate-

gories, or variants for which the evidence is conflicting.

Figure 2 shows the distribution of variants by the classification

category in our database.

After applying these criteria to the complete set of variants

collected by LMM, we filtered the resulting data set to exclude un-

confident predictions. We excluded variants in the likely-patho-

genic category because we considered the classification for this

category to be not stringent enough. We also excluded variants

in the VUS category because this category carries no clinical or bio-

logical significance. This left us with 41 pathogenic variants,

which we treated as truly pathogenic, and seven benign and 26

likely benign variants, all of which we treated as truly benign.

These 74 variants became our gold standard for validation of our

predictor. The complete list of 74 variants is shown in Table S1.

There is a possibility that the manual method of variant classifi-

cation may have selected variants resulting in the most severe

phenotypes, such as those seen in early-onset cases, which may

reduce the utility of our classifier for less severe variants. To inves-

tigate this possibility, we used the age at which an individual was

tested as a proxy for age at onset. The distribution of ages of all

probands tested is roughly trimodal with clear peaks at < 1 and

15 years of age and a broad distribution centered around 50 years

of age (Figure S1). The distribution of pathogenic variants in this

population follows a similar distribution with pathogenic variants
The America
detected across a wide range of age groups tested. If we were indeed

selecting for only the most severe, early-onset phenotypes, we

would expect pathogenic variants to be overrepresented in

newborns and teenagers and to be absent in late-onset cases.

This does not appear to be the case, and we are confident that

our training set does not only consist of pathogenic variants

that lead to high penetrance, early-onset disease.
Predictive Features
We used four features in the final predictor. These features are

described below.

PolyPhen-2 Prediction

Our first feature was a prediction made by the existing method

PolyPhen-2.17 PolyPhen-2’s predictions integrate several sources

of phylogenetic and structural information using machine

learning. Its output represents a general-purpose prediction
n Journal of Human Genetics 88, 183–192, February 11, 2011 185



made without knowledge of the specific disease under consider-

ation. The PolyPhen-2 software reports a score ranging from

0 (neutral) to 1 (damaging), which represents the confidence of

its internal classifier. We used this integrated score as a single

feature in our predictor.

MrBayes Substitution Rate Score

Our second feature was the rate of evolution for each site in each

gene.We computed this using theMarkov chainMonteCarlo algo-

rithm in the MrBayes software package.18 This score took several

days of computer time to calculate for all six genes and would not

have been feasible to calculate for a genome-wide data set.

Examples of the MrBayes instruction files we used are available

as Figure S2. We used a function that infers site-specific evolution

rates and includes them in the program’s output. MrBayes reports

the rate at positions with insufficient alignment depth as 1.000, so

all scores of exactly 1.000 were treated as missing data.We normal-

ized this rate so that the mean rate for each gene was 1.000.

Coiled-Coil Score

Our next two features took advantage of specific properties of the

six target genes. Four of the six target proteins had significant

coiled-coil regions: MYH7, TNNI3, TNNT2, and TPM1. We used

the COILS2 software to predict the tendencies of the wild-type

and mutant sequences to form coiled coils.19,20 Variants that

significantly change the coiled-coil tendency of the sequence are

likely to interfere with protein function.

For each of the four proteins, we downloaded annotations from

SMART to determine the locations of coiled-coil regions.21 For any

variant in a coiled-coil region, we ran COILS2 on both the wild-

type and variant sequences of the coiled-coil region that contained

the variant. COILS2 outputs a score indicating coiled-coil

tendency for each residue in the input sequence with each score

depending on the entire sequence. The feature we used in the final

predictor was the magnitude of the largest single-residue change.

Protein Structure Comparison Score

Four of the six target proteins are contractile proteins studied in

multiple conformations (MYH7 andMYL2 in ATP, ADP, and nucle-

otide-free states; TNNI3 and TNNT2 in Ca2þ-activated and Ca2þ-
free states). For these four proteins, we measured the motion of

each residue between the two conformations. Highly mobile resi-

dues were considered functionally important to the conforma-

tional change, whereas highly immobile residues were considered

structurally important. Intermediately mobile residues were

scored as unimportant. We measured the size of each residue’s

motion by comparing the displacement of the residue to the ex-

pected probability distribution of displacements under random

thermal motion.

We used two sets of structures to compute this score. One was

a set of six structures of a three-chain scallop myosin complex,

consisting of the myosin heavy chain (corresponding to MYH7

in human heart muscle) and the two myosin light chains (corre-

sponding to MYL2 and MYL3 in human heart muscle).22,23 One

of these structures was not bound to a nucleotide (PDB ID

1KK7), two were bound to ADP analogs (PDB ID 1KK8 and

1B7T), and three were bound to ATP analogs (PDB ID 1KQM,

1KWO, and 1L2O). The other set of structures was a pair of struc-

tures of a three-chain chicken troponin complex, consisting of

troponin I (corresponding to TNNI3 in human heart muscle),

troponin T (corresponding to TNNT2 in human heart muscle),

and troponin C (corresponding to TNNC1 in human heart

muscle).24 One of these structures was activated by calcium ions

(PDB ID 1YTZ), and the other had no calcium bound to it (PDB

ID 1YV0).
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We performed pairwise comparisons between structures that

represented the same molecule in different biological states. Pairs

of structures that represented the same biological state (such as

1KK8 and 1B7T, which both represent the ADP-bound state of

myosin) were excluded under the assumption that differences

between these structures would represent differences in the exper-

imental preparation rather than a meaningful conformational

change. We aligned each pair of structures with LovoAlign and

measured the displacement between the a carbons of correspond-

ing residues.25

The variance in the position of an atom in a crystal structure is

given by s2 ¼ B=8p2, where B is the crystallographic temperature

factor for the atom. We computed this variance for the a carbon

of each residue, estimating B as the average of the reported temper-

ature factor for that atom across the two crystal structures.We used

Student’s t test to compare the squared displacement of the atom

with its expected variance. This produced a p value for the

observed squared displacement, with numbers close to 0 represent-

ing motion much smaller than expected, numbers close to 1 rep-

resenting motion much larger than expected, and numbers close

to 0.5 representing the expected amount of motion. Finally, scores

below 0.5 were subtracted from 1, so that a higher score would

consistently represent a more important residue.

The human genes were aligned to the structures with BLAST.

Each residue in the human sequence was scored the same as the

residue it aligned to. Residues that did not align to the structures

were not given a score. Only 84 human residues failed to align

to the structures, which represent 3.2% of all positions in the

four proteins to which we applied this score.

Multiple Sequence Alignments
Both PolyPhen-2 and the MrBayes score described above use

comparative sequence analysis as a source of phylogenetic infor-

mation. These methods take as input aligned sequences of

multiple homologous proteins, and their predictive values criti-

cally depend on the quality of the multiple sequence alignments

used. Existing computational methods, including PolyPhen-2

and SIFT, rely on automated pipelines to construct multiple

sequence alignments.12,13,17 We used the standard automated

alignment pipeline provided by PolyPhen-2 but, because we

only needed to construct six alignments, we were able to inspect

and adjust each alignment manually.

We noticed in our manual inspection that some of the auto-

mated alignments were of very poor quality. The worst alignments

were for the two genes,MYBPC3 andMYH7, that weremost highly

represented in our data set. These genes have numerous homologs

at the domain level, arising from the multiple immunoglobulin

domains of MYBPC3 and the highly conserved myosin motor

domain of MYH7, and the multiple sequence alignments

produced with automatically selected homologs are therefore of

poor quality. We created new alignments for MYBPC3 and MYH7

by manually removing problematic sequences from the automat-

ically generated alignments. This approach allowed us to tune the

alignments manually while still taking advantage of PolyPhen-2’s

automatic filtering of poor alignments and incorrect sequences.

The alignments were very deep to begin with, allowing us to re-

move a large number of sequences without having the alignments

become too shallow to use.

The sequences we removed from the alignments were those that

appeared to have only domain-level homology to the target

sequences and/or did not appear to have a sufficiently similar

function to the target sequences. In other words, we attempted
11, 2011



to create an alignment forMYBPC3 that consisted only of forms of

myosin-binding protein C from various tissues and organisms and

an alignment for MYH7 that consisted only of forms of myosin

heavy chain from various tissues and organisms. The resulting

alignments were used as input to the PolyPhen-2 classifier and

to MrBayes. The sequences used are listed in Tables S3–S6, and

the resulting alignments are shown in Figure S3.

Training and Validation
We trained the classifier on the manually curated set of 74

missense variants in six genes. For each variant in the training

set, we computed the four features described above (PolyPhen-2

prediction, MrBayes substitution rate score, coiled-coil score, and

protein structure comparison score). The values of each feature

for each variant can be found in Table S2. The training algorithm

(Figure S4) aims to maximize accuracy of classification while

keeping the required level of coverage. To avoid overfitting, the

training algorithm uses 10-fold cross validation (Figure S5). This

method splits the training data into ten parts (six parts of seven

samples, four parts of eight samples), trains the classifier on nine

training parts, and tests it on the remaining testing part. It then

repeats the split-train-test procedure ten times, each time with

a different part of the data used for testing. In order to account

for the different results that would be produced by using different

random divisions of the data in this process, we ran 1000 itera-

tions of 10-fold cross validation, using a different random division

of the data each time. We also tested the final classifier using

a leave-one-out cross-validation strategy. The classifier assigns

a prediction of pathogenic, benign, or no call to each variant. The

no call prediction is given to variants the classifier cannot predict

confidently. This category is included so that we can improve

the accuracy (fraction of variants predicted correctly) of our confi-

dent predictions by sacrificing coverage (fraction of variants pre-

dicted to be either pathogenic or benign).2

Feature Selection
To verify that each of these four features made an important

contribution, we constructed four incomplete classifiers, each

one missing one of the four features. We performed validation

on each of these classifiers as described above, and performed

a random permutation test to show that the complete classifier

had higher accuracy than each of the incomplete classifiers. We

performed 106 permutations, so that the minimum p value we

could find was 10�6. Out of our four features, only the Poly-

Phen-2 score had a one-sided p value greater than this minimum,

with p ¼ 0:0544; the other three features all had one-sided p values

of less than 10�6. We also performed the same test to establish that

using manual alignments instead of automatic alignments

improved the score and found that it did with a one-sided p value

of less than 10�6. Figure 5 shows the distributions of accuracies for

each set of features in 1000 runs of cross validation.

In addition to the four features in our final classifier, we also

tried replacing PolyPhen-2 with the similar tools SIFT and

PANTHER.12,13,26,27 We found that each performed comparably

to PolyPhen-2, though the classifier with PolyPhen-2 performed

very slightly better than either, again with one-sided p values

less than 10�6. Interestingly, though PolyPhen-2, SIFT, and

PANTHER were each far more informative individually than any

other single feature, each made by far the least individual contri-

bution to the full four-feature classifier that included it. Evidently,

the other three features together contain enough information to

make the PolyPhen-2, SIFT, or PANTHER score largely redundant.
The America
We also investigated the effect each feature had on coverage.

This was of particular concern for the structure pair score and

the coiled-coil score, each of which is missing entirely from several

genes and regions, which could reduce the predictor’s ability to

make confident classifications in these regions. We found that

both the structure pair score and the coiled-coil score actually

increase the coverage, whereas neither of the other features has

a significant effect. This suggests that it is rare for a variant that

could be scored confidently with the PolyPhen and substitution-

rate scores to be demoted to no call because it is missing one or

both of the other features. In other words, the coiled-coil and

structure pair scores tend to increase confidence where they are

present rather than decreasing it where they are absent.

Results

The Prediction Method

We created an automated method to predict the pathoge-

nicity of missense variants in six genes known to contain

variants that cause HCM. In designing this predictor, we set

out to take advantage of the fact that we were focusing on

a small set of functionally related genes to improve our

predictions.We identified twoways to accomplish this: first,

by exploiting unique structural and biochemical properties

of the six target genes and, second, by applying more

rigorous methods that would be difficult to implement for

large numbers of genes. With these principles in mind, we

developed a total of three predictive features, which we

used inconjunctionwith theexistingPolyPhen-2classifier.17

Two of these features reflect specific structural properties of

sarcomeric proteins. One scores the effect of amino acid

change on coiled-coil regions, whereas the other scores the

importanceof themutated residue to functionally important

conformational transitions in ATP and Ca2þ-binding
domains. The remaining feature is anestimated rate of evolu-

tion at the variant position. This feature was extremely time

consuming to compute and would not have been feasible to

apply to a genome-wide data set. It also was computed from

manually adjusted multiple sequence alignments of homol-

ogous sequences, which required human intervention to

produce. These same manually adjusted alignments were

alsousedas input toPolyPhen-2, improving its performance.

We combined these three features and the PolyPhen-2 score

usingmachine learningwithour setof 74manually classified

variants as a training set. The complete method is presented

graphically in Figure 3.

We also experimented with a small number of alterna-

tive features. The most notable among these were

a different estimate of the rate of evolution computed

with a genomic alignment of 46 vertebrate species, and

several of the individual phylogenetic scores used as

predictive features in PolyPhen-2. Addition of these

features did not improve the performance of the predictor.

Validation of the Method against Manually Classified

Variants

Given the small size of our gold standard data set (74 vari-

ants), the choice of training and validation method was
n Journal of Human Genetics 88, 183–192, February 11, 2011 187



Custom 
alignments

Coiled coil 
score

Protein 
structure pair 

score

PolyPhen-2 
prediction

MCMC 
estimation of 
evolution rate

Machine 
learning

10-fold 
cross-

validation

Clinical 
data

Figure 3. The Automated Prediction Process
For each variant, we computed four features and
combined them by a machine-learning classifier.
We trained this classifier on the high-confidence
variants classified with clinical data and validated
the classifier against the same data using 10-fold
cross validation.
important. Because we had so few variants, it was not

feasible for us to use the simplest validation method of

splitting the data set in half and using one half for training

and the other for testing. Instead, we applied 10-fold cross

validation, which is the accepted procedure in such cases

(see Material and Methods). We ran this validation process

a total of 1000 times to obtain median results and confi-

dence intervals. Figure 4 shows the results of this valida-

tion for six different classifiers at different levels of

coverage and accuracy. We used the bottom row, high-

lighted in red, as our final classifier. The method predicts

each variant as pathogenic, benign, or no call, where the no

call result means that the predictor is not sufficiently confi-

dent to permit a prediction. The median accuracy for

covered variants for the most accurate classifier (the frac-

tion of correct predictions out of all pathogenic and benign

predictions when no call results are disregarded) was

92%, with a 95% confidence interval of 83%–98%

(Figure 5). The median coverage (the fraction of variants

that were predicted as either pathogenic or benign), was

57%, with a 95% confidence interval of 49%–64%; in other
188 The American Journal of Human Genetics 88, 183–192, February 11, 2011
words, the median classifier reported no call

for 43% of variants. The median sensitivity

for covered variants (the fraction of variants

manually classified as pathogenic that were

predicted as pathogenic, excluding those pre-

dicted as no call) was 94%, with a 95% confi-

dence interval of 83%–98%. The median

specificity for covered variants (the fraction

of variants manually classified as benign

that were predicted as benign, excluding
those predicted as no call) was 89%, with a 95% confidence

interval of 83%–98%. The median odds ratio for a predic-

tion of pathogenic (the odds of a pathogenic variant being

classified as pathogenic divided by the odds of a benign

variant being classified as pathogenic) was 10, with a 95%

confidence interval of 4.0–infinity (no upper bound could

be set because more than 5% of trials had no false posi-

tives). The median odds ratio for a prediction of benign

(the odds of a benign variant being classified as benign

divided by the odds of a pathogenic variant being classified

as benign) was 9.9, with a 95% confidence interval of

4.6–21. Leave-one-out cross validation also resulted in

highly similar estimates of all these quantities.

Comparison with General-Purpose Methods

Because our predictor bases its predictions in part on

predictions of the existing general-purpose method Poly-

Phen-2, we investigated whether our predictor was a signif-

icant improvement over the PolyPhen-2 predictor without

our modifications and other general-purpose methods. In

order to investigate this, we tested PolyPhen-2, SIFT, and
Figure 4. Results of Cross Validation
Rows contain median 10-fold cross-validation
results for the gold standard data set at different
levels of coverage. Horizontal bars correspond to
different levels of coverage and median valida-
tion coverage and accuracy levels are indicated.
‘‘True Positives’’ are variants that were manually
classified as pathogenic and that our method pre-
dicted as pathogenic. ‘‘True Negatives’’ are variants
that were manually classified as benign or likely
benign and that our method predicted as benign.
‘‘False Positives’’ are variants that were manually
classified as benign’’ or likely benign but that
our method predicted as pathogenic. ‘‘False Nega-
tives’’ are variants that were manually classified
as pathogenic but that our method predicted as
benign. ‘‘Uncovered’’ are variantswithout a predic-
tion (no call). The bottom-most coverage level,
indicated in red, was used for our final predictor.



Figure 5. Feature Selection Experiment
Each column shows the distribution of accuracies
in 1000 runs of cross validation for a classifier
built with a different set of features: ‘‘all features’’
represents the final four-feature classifier with
manual alignments, ‘‘broken alignments’’ repre-
sents the four-feature classifier without auto-
matic alignments, and each of the other four
columns represents a three-feature classifier
missing the specified feature. Box plots show
lower and upper quartiles (50% confidence inter-
vals), and whiskers show 1.5 IQR ranges. The
addition of each feature appears to improve the
classifier, which is confirmed by a permutation
test.
PANTHER on the same data set. We applied the same

10-fold cross-validation method with each of these three

scores as the only predictive feature. We found that all

three general-purpose scores had comparable performance

on this data set: PolyPhen-2’s median cross-validation

accuracy was 70% (95% confidence interval: 60%–77%),

SIFT’s was 74% (95% confidence interval: 64%–83%),

and PANTHER’s was 68% (95% confidence interval: 56%–

79%). All of these estimates are much lower than the accu-

racies reported for these methods, which may reflect

features of this data set. Our specialized predictor, on the

other hand, had a median accuracy of 92% (95% confi-

dence interval: 83%–98%), as reported above. A permuta-

tion test showed that all three general-purpose predictors

performed worse than our specialized predictor, with

one-sided p values of less than 10�6.
Predictions for Variants without Confident

Classifications

The ultimate goal of our predictor is to provide accurate

predictions for variants that are not confidently classified

by manual methods. This will not be possible if there is

some systematic biological difference between the confi-

dent and unconfident classifications, such as a difference

in penetrance, severity, or mechanism of disease. To deter-

mine whether this is the case, we applied our method to

a low-confidence data set, the set of missense variants

that did not meet the confidence criteria to be manually

classified as truly pathogenic or benign (Figure 6). Of the

missense variants manually classified as likely pathogenic,

80% of those for which a prediction was made were pre-
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dicted as pathogenic. This is consistent

with the expectation that most of these

variants that were classified as likely patho-

genic are indeed pathogenic. It is also

consistent with the expectation that the

fraction of variants predicted as pathogenic

in this set is lower than the fraction of vari-

ants manually classified as confidently

pathogenic. Among variants manually clas-

sified as VUS, 70% of those for which

a prediction was made were predicted to
be pathogenic. Because these variants have been identified

in individuals diagnosed with HCM, there is a higher a pri-

ori likelihood that they are indeed pathogenic, although

we have no way of knowing what the true fraction should

be. The fraction of variants predicted to be pathogenic

remains lower in the VUS set than in the likely-pathogenic

set, which is consistent with what would be expected.

We also used the low-confidence data set to generate an

independent estimate of the predictor’s coverage. We

found that the predictor made a prediction for 60% of

low-confidence variants, which is well within the confi-

dence interval of 49%–64% for the estimated coverage

on the gold standard variants.
Discussion

We developed and clinically validated an automated

method to predict the pathogenic effect of missense vari-

ants that might cause HCM. Unlike current commonly

used methods, our predictor has been validated against

high-confidence manually curated data. This enabled us

to estimate its specificity and sensitivity for the specific

task of predicting HCM mutations, which will allow its

predictions to be incorporated into clinical reports to

health care professionals as one piece of evidence support-

ing a variant classification. Although this tool adds little

for variants whose clinical significance is already sup-

ported by strong genetic and/or functional data, it will

add value for those variants that had little or no prospect

of ever being supported by solid family studies or large

scale healthy control studies. Importantly, our classifier is
an Genetics 88, 183–192, February 11, 2011 189
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Figure 6. Results for Low-Confidence Data Set
Columns indicate, for each class of variants, the number of predic-
tions in predicted categories produced by the final classifier.
particularly helpful for variants identified in minority pop-

ulations, where healthy control cohorts, one of the pillars

of traditional variant classification, are typically unavail-

able.

To maintain high accuracy, it was necessary to sacrifice

coverage, i.e., the proportion of variants for which a predic-

tion ismade.2 As shown in Figure 4, an increase in coverage

is accompanied by a rapid decline in accuracy. A method

attempting to predict every variant as either pathogenic

or benign could not achieve levels of accuracy acceptable

for clinical use. We estimated the coverage of our predictor

at 57%, with a 95% confidence interval of 49%–64%. We

believe this level of coverage is still above the threshold

of clinical usefulness. For comparison, note that out of

350 LMM missense variants in the six target genes, only

74 met the criteria for high-confidence manual classifica-

tion, giving the manual classification process a coverage

of only 21%. Note also that our method covers a different

set of variants than the manual classification process,

including 59% of the variants that the manual classifica-

tion classifies as VUS.

The most important limitation of our automated predic-

tion method stems from the size of the training data set. In

general, training on small data sets may lead to overfitting

of automated classifiers. An overfit classifier may be highly

accurate on the training data but much less accurate on

new data. We applied several safeguards against overfitting

during training and validation. These included limiting

the number of features in the classifier, using only features

that we expected a priori to be informative, and perform-

ing cross validation to calibrate parameters and estimate

accuracy. In this way, we hope we have avoided excessive

overfitting in our final predictor.

It is important to point out that this method may not

accurately predict the effect of those missense variants

that exert their effect partially or fully though affecting

mRNA splicing. This is true for all currently available tools

of this kind, including PolyPhen-2, SIFT, and others. For

example, the MYBPC3 Glu258Lys variant was confidently
190 The American Journal of Human Genetics 88, 183–192, February
manually classified as pathogenic but was incorrectly clas-

sified as benign in several runs of cross-validation (though

not in the final predictor). Many MYBPC3 variants affect

splicing, and there is evidence that the Glu258Lys variant

causes disease via this mechanism. The underlying cDNA

alteration is c.772>A, which affects the last base of

exon 6. This position is known to be part of the splice

consensus and five different splice predictors (SpliceSite-

Finder-like, MatEntScan, NNSPLICE, GeneSplicer, and

Human Splice Finder; see Figure S6) predict an impact on

splicing. This is supported by evidence showing that this

may result in skipping of exon 6.28,29 Therefore, the

conservation of the nucleotide and not the amino acid at

this position is essential, possibly explaining a mispredic-

tion by our predictor. This is a limitation of this method

and clearly lends itself to future improvement and genera-

tion of tools that incorporate a splice assessment.

It is also important to point out that clinical laboratories

are typically aware of this limitation. Novel variant assess-

ment is a lengthy and complex process that relies on a large

collection of different computer tools in combination with

traditional genetic evidence such as familial segregation

with disease and absence from race-matched healthy

controls. All evidence is taken into account to synthesize

a final probability for pathogenicity. In our laboratory,

a splice assessment is performed for everyvariant, regardless

of whether it changes an amino acid or not, and a benign

prediction by this predictor would not lead to a final classi-

ficationofbenign, particularlynot for genes forwhichpath-

ogenic splice variants are known to be common.

This example illustrates that this predictor or any other

predictor developed with this methodology should not be

used as a sole foundation for a diagnosis but rather be

used in combination with other lines of evidence in agree-

ment with recommendations from the American College

of Medical Genetics and the International Agency for

Research on Cancer.1,2 We envision future development of

a single probabilistic classifier that would automatically

combine heterogeneous factors such as familial segrega-

tion, frequency in controls, functional evidence, and

computationalpredictions followingearlywork in this area.
Conclusion

We have addressed the problems that prevent automated

predictors from being widely used in genomic medicine

by developing a custom-tailored predictor specifically de-

signed for clinical use. Our analysis suggests several impor-

tant considerations that can increase the accuracy of

computational methods. Manual adjustment of multiple

sequence alignments and time-consuming computational

methods ofmolecular evolution are feasible when focusing

on a small set of genes and may improve predictions that

use comparative sequence analysis. Exploitation of specific

structural properties of proteins also becomes feasible

when focusing on a specific disease. Most importantly,
11, 2011



a highly accurate manually curated data set is necessary to

train and validate an accurate predictor, and this level of

validation enables clinical laboratories to include it as

part of their variant assessment processes. Where previous

studies have concluded that existing tools are not mature

enough for clinical use, we believe that our tool is ready

for clinical use now, in combination with other sources

of information. Our collaborating clinical laboratory, the

LMM, has already begun to use our predictor as a source

of information about HCM variants, and we look forward

to helping additional laboratories do the same. Our study

focused on HCM, but we believe that our approach is

general and that analogous methods can be constructed

for many other diseases where genetic testing is an impor-

tant part of the diagnosis. In the future, we expect to work

with additional laboratories and on additional diseases to

expand the use of automated predictors in genomic medi-

cine and simplify the problem of interpreting novel

variants.
Supplemental Data

Supplemental Data includes six figures and six tables and can be

found with this article online at http://www.cell.com/AJHG/.
Acknowledgments

This research was supported by grants from the National Institutes

of Health (R01 GM078598, T32 GM008313). We would like to

thank Steve DePalma, Dan Hermann, and Jon and Christine Seid-

man for their help with the CardioGenomics database and

insights into HCM.

Received: August 19, 2010

Revised: January 17, 2011

Accepted: January 19, 2011

Published online: February 10, 2011
Web Resources

The URLs for data presented herein are as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim

PolyPhen-HCM method, http://genetics.bwh.harvard.edu/hcm
References

1. Richards, C.S., Bale, S., Bellissimo, D.B., Das, S., Grody, W.W.,

Hegde, M.R., Lyon, E., and Ward, B.E.; Molecular Subcom-

mittee of the ACMG Laboratory Quality Assurance

Committee. (2008). ACMG recommendations for standards

for interpretation and reporting of sequence variations: Revi-

sions 2007. Genet. Med. 10, 294–300.

2. Plon, S.E., Eccles, D.M., Easton, D., Foulkes, W.D., Genuardi,

M., Greenblatt, M.S., Hogervorst, F.B., Hoogerbrugge, N.,

Spurdle, A.B., and Tavtigian, S.V.; IARC Unclassified Genetic

Variants Working Group. (2008). Sequence variant classifica-

tion and reporting: recommendations for improving the inter-
The America
pretation of cancer susceptibility genetic test results. Hum.

Mutat. 29, 1282–1291.

3. Ng, P.C., and Henikoff, S. (2006). Predicting the effects of

amino acid substitutions on protein function. Annu. Rev.

Genomics Hum. Genet. 7, 61–80.

4. Thusberg, J., and Vihinen, M. (2009). Pathogenic or not? And

if so, then how? Studying the effects of missense mutations

using bioinformatics methods. Hum. Mutat. 30, 703–714.

5. Jordan, D.M., Ramensky, V.E., and Sunyaev, S.R. (2010).

Human allelic variation: perspective from protein function,

structure, and evolution. Curr. Opin. Struct. Biol. 20, 342–350.

6. Tchernitchko, D., Goossens, M., and Wajcman, H. (2004). In

silico prediction of the deleterious effect of a mutation:

proceed with caution in clinical genetics. Clin. Chem. 50,

1974–1978.

7. Dorfman, R., Nalpathamkalam, T., Taylor, C., Gonska, T.,

Keenan, K., Yuan, X.W., Corey, M., Tsui, L.C., Zielenski, J.,

and Durie, P. (2010). Do common in silico tools predict the

clinical consequences of amino-acid substitutions in the

CFTR gene? Clin. Genet. 77, 464–473.

8. Tavtigian, S.V., Greenblatt, M.S., Lesueur, F., and Byrnes, G.B.;

IARCUnclassified Genetic VariantsWorking Group. (2008). In

silico analysis of missense substitutions using sequence-align-

ment based methods. Hum. Mutat. 29, 1327–1336.

9. Goldgar, D.E., Easton, D.F., Deffenbaugh, A.M., Monteiro,

A.N.A., Tavtigian, S.V., and Couch, F.J.; Breast Cancer Informa-

tion Core (BIC) Steering Committee. (2004). Integrated evalu-

ation of DNA sequence variants of unknown clinical signifi-

cance: application to BRCA1 and BRCA2. Am. J. Hum.

Genet. 75, 535–544.

10. Wang, L., Seidman, J.G., and Seidman, C.E. (2010). Narrative

review: harnessing molecular genetics for the diagnosis and

management of hypertrophic cardiomyopathy. Ann. Intern.

Med. 152, 513–520, W181.

11. Richard, P., Charron, P., Carrier, L., Ledeuil, C., Cheav, T.,

Pichereau, C., Benaiche, A., Isnard, R., Dubourg, O., Burban,

M., et al; EUROGENE Heart Failure Project. (2003). Hypertro-

phic cardiomyopathy: distribution of disease genes, spectrum

of mutations, and implications for a molecular diagnosis

strategy. Circulation 107, 2227–2232.

12. Ng, P.C., and Henikoff, S. (2001). Predicting deleterious amino

acid substitutions. Genome Res. 11, 863–874.

13. Ng, P.C., and Henikoff, S. (2003). SIFT: Predicting amino acid

changes that affect protein function. Nucleic Acids Res. 31,

3812–3814.

14. Bromberg, Y., and Rost, B. (2007). SNAP: predict effect of non-

synonymous polymorphisms on function. Nucleic Acids Res.

35, 3823–3835.

15. Yue, P., and Moult, J. (2006). Identification and analysis of

deleterious human SNPs. J. Mol. Biol. 356, 1263–1274.

16. Yue, P., Melamud, E., and Moult, J. (2006). SNPs3D: candidate

gene and SNP selection for association studies. BMC Bioinfor-

matics 7, 166.

17. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gera-

simova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R.

(2010). A method and server for predicting damaging

missense mutations. Nat. Methods 7, 248–249.

18. Ronquist, F., and Huelsenbeck, J.P. (2003). MrBayes 3:

Bayesian phylogenetic inference under mixed models. Bioin-

formatics 19, 1572–1574.

19. Lupas, A., van Dyke, M., and Stock, J. (1991). Predicting coiled

coils from protein sequences. Science 252, 1162–1164.
n Journal of Human Genetics 88, 183–192, February 11, 2011 191

http://www.cell.com/AJHG/
http://www.ncbi.nlm.nih.gov/Omim
http://www.ncbi.nlm.nih.gov/Omim
http://genetics.bwh.harvard.edu/hcm


20. Lupas, A. (1996). Prediction and analysis of coiled-coil struc-

tures. Methods Enzymol. 266, 513–525.

21. Letunic, I., Doerks, T., and Bork, P. (2009). SMART 6: recent

updates and new developments. Nucleic Acids Res. 37 (Data-

base issue), D229–D232.

22. Houdusse, A., Kalabokis, V.N., Himmel, D., Szent-Györgyi,

A.G., and Cohen, C. (1999). Atomic structure of scallop

myosin subfragment S1 complexed with MgADP: a novel

conformation of the myosin head. Cell 97, 459–470.

23. Himmel, D.M., Gourinath, S., Reshetnikova, L., Shen, Y.,

Szent-Györgyi, A.G., and Cohen, C. (2002). Crystallographic

findings on the internally uncoupled and near-rigor states of

myosin: further insights into the mechanics of the motor.

Proc. Natl. Acad. Sci. USA 99, 12645–12650.

24. Vinogradova, M.V., Stone, D.B., Malanina, G.G., Karatzaferi,

C., Cooke, R., Mendelson, R.A., and Fletterick, R.J. (2005).

Ca(2þ)-regulated structural changes in troponin. Proc. Natl.

Acad. Sci. USA 102, 5038–5043.

25. Martı́nez, L., Andreani, R., and Martı́nez, J.M. (2007). Conver-

gent algorithms for protein structural alignment. BMC Bioin-

formatics 8, 306.
192 The American Journal of Human Genetics 88, 183–192, February
26. Thomas, P.D., Campbell, M.J., Kejariwal, A., Mi, H., Karlak,

B., Daverman, R., Diemer, K., Muruganujan, A., and Nare-

chania, A. (2003). PANTHER: a library of protein families

and subfamilies indexed by function. Genome Res. 13,

2129–2141.

27. Thomas, P.D., Kejariwal, A., Guo, N., Mi, H., Campbell, M.J.,

Muruganujan, A., and Lazareva-Ulitsky, B. (2006). Applica-

tions for protein sequence-function evolution data: mRNA/

protein expression analysis and coding SNP scoring tools.

Nucleic Acids Res. 34 (Web Server issue), W645–50.

28. Andersen, P.S., Havndrup, O., Bundgaard, H., Larsen, L.A.,

Vuust, J., Pedersen, A.K., Kjeldsen, K., and Christiansen, M.

(2004). Genetic and phenotypic characterization ofmutations

in myosin-binding protein C (MYBPC3) in 81 families with

familial hypertrophic cardiomyopathy: total or partial hap-

loinsufficiency. Eur. J. Hum. Genet. 12, 673–677.

29. Marston, S., Copeland, O., Jacques, A., Livesey, K., Tsang, V.,

McKenna, W.J., Jalilzadeh, S., Carballo, S., Redwood, C., and

Watkins, H. (2009). Evidence from humanmyectomy samples

that MYBPC3 mutations cause hypertrophic cardiomyopathy

through haploinsufficiency. Circ. Res. 105, 219–222.
11, 2011


	Development and Validation of a Computational Method for Assessment of Missense Variants in Hypertrophic Cardiomyopathy
	Introduction
	Material and Methods
	Selection of Target Genes
	Manual Classification of HCM Variants
	Pathogenic
	Likely Pathogenic
	Benign or Likely Benign
	VUS

	Predictive Features
	PolyPhen-2 Prediction
	MrBayes Substitution Rate Score
	Coiled-Coil Score
	Protein Structure Comparison Score

	Multiple Sequence Alignments
	Training and Validation
	Feature Selection

	Results
	The Prediction Method
	Validation of the Method against Manually Classified Variants
	Comparison with General-Purpose Methods
	Predictions for Variants without Confident Classifications

	Discussion
	Conclusion
	Supplemental Data
	Acknowledgments
	Web Resources
	References


